If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+330t-44.1=0
a = 4.9; b = 330; c = -44.1;
Δ = b2-4ac
Δ = 3302-4·4.9·(-44.1)
Δ = 109764.36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(330)-\sqrt{109764.36}}{2*4.9}=\frac{-330-\sqrt{109764.36}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(330)+\sqrt{109764.36}}{2*4.9}=\frac{-330+\sqrt{109764.36}}{9.8} $
| .25(4+a)=5 | | X^2=9y | | 1/4(4+a)=5 | | 155=3x | | 3(8+a)=48 | | 4(14+a)=140 | | 10x10.3636363636=4,5x10.3636363636+300 | | 3(f-5)=27 | | -2p-9=-10p-17 | | |6x|=60 | | 10x=4,5x+300 | | 2x+7/8=1/8 | | ((x-2)/7)=6 | | 10(10+f)=400 | | (x-3)²=40 | | 5x=75. | | 40(10+f)=1800 | | 4(x+8)-4=34-2+x | | 5x^2-28=27 | | 5×5÷5+3(X+7)=2x+27 | | 20(4+x)=160 | | x/1x/2=90° | | 12(f-2)=48 | | 4x2+3x+2=3x2+x+1 | | -4/9u=16/27 | | 4^x+4=8^x-9 | | -49u=1627 | | t/16+13=19 | | 6x+15-x=75 | | 20x-11,5x-3,5x=575 | | 12-3x-8=-5x+6 | | 2x+3(x-3)=6x+8 |